Necesitamos más y mejores baterías en todos los ámbitos. Unos investigadores han tenido una idea: recurrir a lo nuclear

La investigación en el ámbito de las baterías no cesa. Y es comprensible que sea así. La popularización del coche eléctrico requiere que estos dispositivos de almacenamiento de energía tengan las mejores prestaciones posibles. Como os sugerimos en el titular, la protagonista de este artículo es una tecnología que persigue desarrollar baterías nucleares para dispositivos electrónicos. Esta idea es el fruto de una investigación desarrollada por un grupo de ingenieros de la Universidad Estatal de Ohio (EEUU).
En el artículo que han publicado en Optical Materials: X sostienen que es posible utilizar los residuos radiactivos resultantes de la actividad de los reactores de fisión en operación para generar la electricidad que requieren muchos dispositivos electrónicos. «Estamos aprovechando algo que se considera un desecho y tratando de transformarlo en un tesoro», ha declarado Raymond Cao, ingeniero nuclear y uno de los autores del artículo. Para probar su idea han fabricado una pequeña batería prototipo que tiene un volumen aproximado de 4 centímetros cúbicos.
Su plan consiste en introducir en la batería cesio-137 o cobalto-60, dos elementos químicos radiactivos que son habitualmente producto de la fisión nuclear, con el propósito de utilizar la radiación gamma que emiten para generar una pequeña cantidad de electricidad. Su prototipo entregó 288 nanovatios con cesio-137 y 1,5 microvatios con cobalto-60. Es evidente que es muy poca electricidad, pero estos científicos confían en poder mejorar su tecnología lo suficiente para alimentar algunos dispositivos electrónicos no muy exigentes, como pequeños sensores o monitores que requieren poco mantenimiento.
En cualquier caso, no proponen estas baterías para el mercado de consumo. Si logran refinar su tecnología sostienen que se podrá utilizar en dispositivos alojados cerca de las instalaciones en las que se produce el residuo radiactivo, como, por ejemplo, en el interior de las centrales nucleares. Por otro lado, aseguran que su batería podrá ser manipulada con seguridad y no contaminará el entorno. La radiación gamma es muy penetrante, lo que les obligará a poner a punto un recinto protector muy robusto. Además, dejan otra pregunta en el aire: no está claro cuál será la vida útil de una batería de este tipo.
La gamma es una forma de radiación ionizante
La radiactividad es el proceso de origen natural que explica cómo un núcleo atómico inestable pierde energía en el intento de alcanzar un estado más estable. Y para lograrlo emite radiación. Alrededor del núcleo orbitan una o varias partículas elementales aún mucho más diminutas y con carga eléctrica negativa a las que llamamos electrones. El núcleo, a su vez, está conformado por uno o varios protones, que son partículas con carga eléctrica positiva. El átomo más sencillo que podemos encontrar en la naturaleza es el de protio (hidrógeno-1), un isótopo del hidrógeno que tiene un único protón en su núcleo y un único electrón orbitando en torno a él.
El problema es que la materia no está compuesta únicamente de protio, sino también de muchos otros elementos químicos más complejos y pesados, y que, por tanto, tienen más protones en su núcleo y más electrones orbitando en torno a él. ¿Cómo es posible que haya más de un protón en el núcleo si todos ellos tienen carga eléctrica positiva? Lo razonable es pensar que no podrían estar muy juntos porque al tener la misma carga eléctrica elemental se repelerían. Y sí, esta idea es coherente. Los responsables de resolver este dilema son los neutrones, las partículas que conviven con los protones en el núcleo atómico.
El campo de Higgs es una interacción fundamental que explica cómo las partículas adquieren su masa
A diferencia de los protones, los neutrones tienen carga eléctrica global neutra, por lo que no «sienten» ni la repulsión ni la atracción electromagnética a la que están expuestos los protones y los electrones. La función de los neutrones no es otra que estabilizar el núcleo, permitiendo que puedan convivir en él varios protones que, de otra forma, se repelerían. Y consiguen hacerlo gracias a la acción de una de las cuatro fuerzas fundamentales de la naturaleza: la interacción nuclear fuerte.
Las otras tres fuerzas son la interacción electromagnética, la gravedad y la interacción nuclear débil. Los físicos suelen colocar a este mismo nivel el campo de Higgs, que es otra interacción fundamental que explica cómo las partículas adquieren su masa, pero para facilitar su comprensión los textos suelen recoger como fuerzas fundamentales las cuatro que he mencionado un poco más arriba porque son de alguna manera con las que todos estamos familiarizados.
Los nucleones, que son los protones y los neutrones del núcleo atómico, consiguen mantenerse juntos y vencer la repulsión natural a la que se enfrentan los protones debido a que la presencia de los neutrones permite que la fuerza nuclear fuerte ejerza como un pegamento capaz de imponerse a la fuerza electromagnética. La interacción nuclear fuerte tiene un alcance muy reducido, pero a cortas distancias su intensidad es enorme. Lo importante de todo esto es que los neutrones, como os adelanté unas líneas más arriba, actúan estabilizando el núcleo atómico, de manera que a medida que un átomo tiene más protones necesitará también que en su núcleo haya más neutrones para que la fuerza fuerte atractiva consiga imponerse a la fuerza electromagnética repulsiva.
Curiosamente, el equilibrio entre la cantidad de protones y neutrones es muy delicado. Un átomo es estable si su núcleo tiene una cantidad precisa de nucleones y el reparto de estos entre protones y neutrones permite que la interacción nuclear fuerte actúe como «pegamento». Por esta razón en la naturaleza solo podemos encontrar una cantidad finita de elementos químicos: los que recoge la tabla periódica con la que todos estamos en mayor o menor medida familiarizados. Cualquier otra combinación de protones y neutrones no permitiría mantener ese fino equilibrio, dando lugar a un átomo inestable.
Lo que diferencia a un átomo estable de uno inestable es que en el núcleo de estos últimos la interacción nuclear fuerte y la fuerza electromagnética no están en equilibrio, por lo que el átomo necesita modificar su estructura para alcanzar un estado de menor energía que le permita adoptar una configuración más estable. Un átomo estable está «cómodo» con su estructura actual y no necesita hacer nada, pero uno inestable necesita desprenderse de una parte de su energía para alcanzar el estado de menor energía del que acabamos de hablar.
Un átomo inestable tiene a su disposición cuatro mecanismos diferentes que pueden ayudarle a modificar su estructura para adoptar una configuración estable: la radiación alfa, beta, beta inversa y gamma
En ese caso ¿cómo consigue el átomo desprenderse de una parte de su energía? La respuesta es sorprendente: recurriendo a un mecanismo cuántico conocido como «efecto túnel» que le permite hacer algo que a priori parece imposible, y que no es otra cosa que superar una barrera de energía. Este efecto cuántico es complejo y muy poco intuitivo, pero, afortunadamente, no es necesario que profundicemos en él para entender con claridad cómo funciona la radiactividad. Lo que sí es importante es que sepamos que un átomo inestable tiene a su disposición cuatro mecanismos diferentes que pueden ayudarle a modificar su estructura para adoptar una configuración estable: la radiación alfa, beta, beta inversa y gamma.
El primero de estos mecanismos, la radiación alfa, permite al átomo deshacerse de una parte de su núcleo emitiendo una partícula alfa, que está constituida por dos protones y dos neutrones. El siguiente mecanismo es la radiación beta, que necesita que un neutrón del núcleo atómico se transforme en un protón, y durante este proceso además emite un electrón y un antineutrino. La radiación beta inversa funciona justo al contrario que la radiación beta: un protón se transforma en un neutrón y este proceso emite un antielectrón y un neutrino, que son las antipartículas del electrón y el antineutrino emitidos por la radiación beta.
Y, por último, la radiación gamma, que es la más energética y la más penetrante de todas, requiere la emisión de un fotón de alta energía, conocido habitualmente como rayo gamma, por lo que el núcleo atómico mantiene su estructura original. Algunos de estos fotones de alta energía son capaces de atravesar muros de hormigón muy gruesos y planchas de plomo, por lo que esta es la forma de radiación más peligrosa de todas.
Como acabamos de ver, la radiactividad permite a los átomos inestables desprenderse de una parte de su energía con el propósito de alcanzar un estado menos energético y más estable, pero ¿qué sucede realmente con esa energía? El principio de conservación de la energía dice que no puede destruirse, así que necesariamente se la llevan las partículas emitidas por el átomo inestable como resultado de cualquiera de las cuatro formas de radiación de las que acabamos de hablar. Esa energía provoca que las partículas emitidas salgan despedidas como diminutas balas que tienen la capacidad de interaccionar con la materia que encuentran a su paso.
Imagen | ThisIsEngineering
Más información | Optical Materials: X
En Xataka | Hito en física cuántica: el CERN ha observado el entrelazamiento cuántico a un nivel de energía inédito